Jet Propulsion Laboratory California Institute of Technology # **Design Principles** for Smallsat SARs Tony Freeman August 2018 12m ## TRADITIONAL APPROACH TO SAR DESIGN - 1. Minimize along-track spatial resolution - 2. Size antenna to give widest possible $\delta x \ge L_a/2$ ambiguity-free swath - $$W_{g(max)}$$ $$A_a = W_a L_a > \frac{K4V\lambda R_m}{C} \tan \eta$$ 3. Maximize Signal-to-Noise ratio $$SNR_{max} \propto \frac{P_t L_a W_a^2 \tau_p}{B_n}$$ $$\longleftarrow$$ W_g \longrightarrow # **TRADE-OFFS** # PAST, PRESENT AND NEAR-TERM FUTURE SARS - For single-instrument SARs, Antenna Mass and S/C Mass are well-correlated - Antenna Mass < 200 kg only for antennas that are NOT phased arrays - NOT phased arrays means microstrip patches, slotted waveguides, and reflector antennas - Really low antenna mass densities correlate with small # modes, except RISAT-2 which is a reflector antenna + phased array feed #### **Design Principles for Smallsat SARs** #### ANTENNA MASS DENSITY AND # MODES - D) Select the Lowest Mass Density Antenna - E) Choose the smallest possible number of Imaging Modes ### **POLARIZATION DIVERSITY** F) Add polarization diversity only when needed to meet the majority of system requirements # **NASA/ISRO NISAR** #### **ESA BIOMASS** - Scientists require cross-pol (HV) backscatter measurements because they carry a lot of information at longer wavelengths - Full polarimetry can help calibrate out Faraday rotation effects 10 #### DATA RATES AND POWER CONSUMPTION G) Select a Data Rate that maximizes on-time per orbit H) Select an average power consumption that maximizes ontime per orbit (but beware thermal overload) $$P_{DC} = \left(\frac{P_t \tau_p PRF}{\varepsilon} + P_{rec}\right) \cdot \frac{T_{on}}{T_{orbit}}$$ But, SNR Formula remains unchanged $SNR_{max} \propto \frac{P_t L_a W_a^2 \tau_p}{R}$ $$\propto \frac{P_t L_a W_a^2 \tau_p}{B_n}$$ #### **Design Principles for Smallsat SARs** ### PUTTING THE DESIGN PRINCIPLES INTO PRACTICE - A. Very short antenna - B. With the widest possible extent (30 cm) at Ka-Band - D. Reflectarray antenna was the lowest mass density option available - E. Single imaging mode - F. Single polarization - G. BFPQ of (8:4) and a Presum factor of 3 reduce the data rate - H. Thermal constraints limited the ontime per-orbit for this concept to just 3 mins | Parameter | Value | | |-------------------------------|-------------|--| | Orbit altitude | 400 km | | | Center Frequency | 35 GHz | | | Incidence angle | 30 degrees | | | Transmit peak RF power | 240W | | | DC Power | 160W | | | Pulse length | 50 microsec | | | Antenna Dimensions | 1.7 X 0.3 m | | | F/D ratio | 0.7 | | | Bandwidth | 30 MHz | | | Data rate | 104 Mbps | | | On-time per orbit | 3 mins | | | Downlink rate | 40 Mbps | | | Noise-equivalent sigma-zero | -17 dB | | | Spatial resolution/# of looks | 10 m/2 | | | Swath width | 15 km | | # Design Principles for Smallsat SARs # **DESIGN EXAMPLES** | SAR Design
Concept | Features | Antenna Type
[Mass Density] | |---|--|--| | Mars UHF
SAR (2003) ⁵⁰⁻
52 | Polarimetry, BFPQ,
PreSum, Over-
illumination of
Swath, single mode | Passive, deployable
reflector
[2.0 kg/m ²] | | Biomass
precursor
(2004) ⁵³ | Short antenna,
Polarimetry, BFPQ,
PreSum, single
mode | Passive, deployable
reflector
[1.9 kg/m ²] | | DESDynI
(2009) ^{42,43} | Polarimetry, multiple
modes, SweepSAR | Passive, deployable
reflector with a
phased array feed
[3.6 kg/m ²] | | VERITAS
(2014) ^{54,55} | Single polarization,
Short antennas, OBP,
single mode | Slotted Waveguide
[10.5 kg/m ²] | | Ka-band
Cubesat SAR
(2016) ⁵⁶ | Short antenna, single mode of operation | Slotted Waveguide or
Microstrip Patch or
Reflectarray
[7.9 kg/m ²] | | S-band
Smallsat SAR
constellation
(2017) ⁵⁷ | Single polarization,
Short antenna,
BFPQ, PreSum,
single mode | Slotted Waveguide or
Microstrip Patch
[10.0 kg/m ²] | | VHF radar
sounder
(2017) ⁵⁸ 7 | PreSum, OBP, single
mode | Yagi
[9.9 kg with 10 m
crossed dipoles] | # **SUMMARY OF PRINCIPLES** - A) Minimize the Antenna Length - B) Minimize the Antenna Width - C) Over-illuminate the Swath - D) Select the Lowest Mass Density Antenna - E) Choose the smallest possible number of Imaging Modes - F) Add polarization diversity only when needed to meet the majority of system requirements - G) Select a Data Rate that maximizes on-time per orbit - H) Select an average power consumption that maximizes on-time per orbit (but beware thermal overload)